
A Python Implementation of
Schemaless Model on MySQL

Ryan (Jianye) Ye, Google
PyCon 2011, China

Friday, November 25, 2011

About Me

2 year Graph Architect in NVIDIA

1 year Lead Developer in Slide
China (Acquired by Google)

1.5 year Technical Lead in
Prizes.org Team, Google Shanghai

Friday, November 25, 2011

Slide uses Python to
Build ...

Web Servers

Data Access Servers

Background Processing Servers

Application/Business Logics

Infrastructure Tools

Friday, November 25, 2011

What is Schemaless ?
No pre-defined columns and data types

Each row in a table is a object with
arbitrary data structure

Example:
1: {‘name’ : ‘John’, ‘phone’ : ‘12345678’}
2: {‘name’ : ‘Tom’, ‘address’ : {
 ‘street’ : ‘Fifth Avenue’,
 ‘no’ : 321,
 }
 }

Friday, November 25, 2011

Why we went
Schemaless data model?

Same data representations in
Python and database

Fast development iteration

Friday, November 25, 2011

Why not using existing
NoSQLs ?

The short Answer is that we developed our
solution before most of NoSQL solutions
enter mainstream.

Other reasons include

We want to store all our data in a centre
place (MySQL)

It’s fun to implement such software in
Python

Friday, November 25, 2011

Basic structure of
GRAPH

Every object is in a node in a tree.

Nodes are connected by edges

Each node has its own properties

Friday, November 25, 2011

GRAPH Example
User : {‘name’ : ‘Ryan’, ‘email’ :
‘ryanye@google.com’ }

Entry : {‘text’ : ‘PyCon Logo’,
‘image’ : ‘/id345/logo.png’}

Comment : {‘text’ : ‘Awesome!’,
‘date’ : 1322048950}

User

Entry

Comment Comment

Entry

Friday, November 25, 2011

mailto:ryanye@google.com
mailto:ryanye@google.com

DB Schema - Node
TABLE GraphNode

id: unique identity

type: long

properties: binary (max 64KB)

children_count: long

time_created: long

time_removed: long

Serializer: wirebin - https://github.com/
slideinc/wirebin

Friday, November 25, 2011

https://github.com/slideinc/wirebin
https://github.com/slideinc/wirebin
https://github.com/slideinc/wirebin
https://github.com/slideinc/wirebin

DB Schema - Edge
TABLE GraphEdge

id: unique identity

parent_id: long

child_id: long

time_created: long

time_removed: long

Friday, November 25, 2011

Access GRAPH API
graph.node(node_id)

graph.children(parent_id, type = None)

graph.create(parent_id, type, properties)

graph.update(node_id, properties)

graph.remove(node_id)

graph.move(node_id, new_parent_id)

Friday, November 25, 2011

The Architecture
Web ServersWeb ServersWeb Servers

Data Access
Servers

Data Access
Servers

Data Access
Servers

DatabasesDatabasesDatabases

Internet

Friday, November 25, 2011

Scale with Multi-DB
Sharding by high bits of node-id
db-shard-id = (node-id >> 52) & 0xfff

Easy to implement - MySQL auto-incr-id
+ predefined-base-id

Easy to add new shards, maximum to
4096 db instances

No data relocation when adding shards

Friday, November 25, 2011

Scale with Multi-DB

Edges and children nodes lives in the
same db shard as their parents

Single SQL-statement on graph.children

Better use of locality

Not always true due to graph.move

Friday, November 25, 2011

Data Access Servers
A Graph Access Server is a Python process
with a dozens of coro-threads.

Dispatcher: A coro-thread listening to
server port, dispatch access calls to
workers

Workers: pre-allocated coro-threads
performing cache lookup or SQL queries

* coro-thread: coroutine thread, a
lightweight user-space ‘thread’.
https://github.com/slideinc/gogreen

Friday, November 25, 2011

https://github.com/slideinc/gogreen
https://github.com/slideinc/gogreen

Data Access Servers

What else in a Graph Access Server ?

A Pool of Connections to all DB shards

Cache LRU Balancer: a coro-thread
periodically monitoring in-memory
data cache, evicting least recently
used items.

Friday, November 25, 2011

LRU Caches
L1 Cache: nodes/edges, a big Python
Dict using node-id as keys

L2 Cache: Similar to L1, but all data are
compressed via zlib + wirebin

Cache data are persistent on disk when
server exits. Serialize with wirebin

Only read-cache, always write through

Friday, November 25, 2011

Cache Invalidation
graph.update invalidates the cache of that
node

graph.create invalidates the cache of the
parent

graph.remove invalidates the cache of that
node and its parent

graph.move invalidates the cache of old
parent and new parent

Friday, November 25, 2011

Dispatcher
Worker Worker Worker

......

Worker Worker Worker Memory
Caches

LRU Balancer
DB Connection

Pool

RPC Calls

Graph
Server

Friday, November 25, 2011

Server Configuration

32 graph-server instances on a physical
server box (approximately to num-of-cores)

In each graph-server

128 workers

16 Connections to each DB shards

Friday, November 25, 2011

Performance for Single
Server

Server 128 x 32 requests in parallel

Average response times 1.38ms

Average Cache-hit rate 99.72%

Theoretically, MAX Request Per Sec on a box
= 128 x 32 x (1000 / 1.38)
= 2.73 Million

Friday, November 25, 2011

Scale with Multi Graph
Access Servers

Sharding by lower bits of node-id
server-id = node-id & 0xff

Uniformly distribute traffic

A node only is cached on a single server.
No cache-sync between servers.
* Except for peers, see the next slide

Friday, November 25, 2011

Failover with a peer
Graph Server

If we have 32 servers with id 0...31, each server
will subscribe requests for node-id meeting
(node-id & 0xf) == (server-id & 0xf)
i.e, server with id-N and id-(N+16) are peers.

For cache invalidation, the server will broadcast
to its peer.

On pushing new server code, the peers always
restarted sequentially

Friday, November 25, 2011

Summary

A Graph Model for general data storage

Leverage coroutine-threads to archive high
performance

A 2-level In-memory cache to minimize DB
access

Scale across multi servers with simple
sharding function

Friday, November 25, 2011

Thanks, questions?

Friday, November 25, 2011

