A Python Implementation of
Schemaless Model on MySQL

Ryan (Jianye) Ye, Google
PyCon 2011, China




About Me

@ 2 year Graph Architect in NVIDIA

@1 year Lead Developer in Slide
China (Acquired by Google)

@1.5 year Technical Lead in
Prizes.org Team, Google Shanghai




Slide uses Python to
Build ...
@Web Servers
@ Data Access Servers
@ Background Processing Servers

@ Application/Business Logics

@ Infrastructure Tools




What is Schemaless ?

@ No pre-defined columns and data types

® Each row in a table is a object with
arbitrary data structure

@ Example:
1: {'name’ : ‘John’, 'phone’ : 12345678’}
2: {'name’ : ‘Tom’, ‘address’ : {
‘'street’ : 'Fifth Avenue’,
‘no’ : 321,
;
;

Friday, November 25, 2011



why we went
Schemaless data model?

@ Same data representations in
Python and database

@ Fast development iteration




Why not using existing
NoSQLs ?

@ The short Answer is that we developed our
solution before most of NoSQL solutions
enfer mainstream.

® Other reasons include

® We want to store all our data in a centre
place (MySQL)

@ Its fun to implement such software in
Python

Friday, November 25, 2011



Basic structure of
GRAPH

@Every object is in a node in a tree.

@Nodes are connected by edges

@ Each node has its own properties




GRAPH Example

@ User : {'name’ : 'Ryan’, ‘email’ :
'ryanye@google.com’ }

@ Entry : {'text’ : 'PyCon Logo/,
'image’ : '/id345/logo.png’}

@ @ @ Comment : {'text : Awesome!’,
‘date’ : 1322048950}

Friday, November 25, 2011


mailto:ryanye@google.com
mailto:ryanye@google.com

DB Schema - Node

@ TABLE GraphNode
@ Id: unique identity
@ type: long
@ properties: binary (max 64KB)
@ children_count: long
@ time_created: long
@ time_removed: long

@ Serializer: wirebin - https://github.com/
slideinc/wirebin

Friday, November 25, 2011


https://github.com/slideinc/wirebin
https://github.com/slideinc/wirebin
https://github.com/slideinc/wirebin
https://github.com/slideinc/wirebin

DB Schema - Edge

@ TABLE GraphEdge
@ id: unique identity
@ parent_id: long
@ child_id: long
@ time_created: long

@ time_removed: long

Friday, November 25, 2011



Access GRAPH API

@ graph.node(node__id)

@ graph.children(parent_id, type = None)

@ graph.create(parent_id, type, properties)
@ graph.update(node_.id, properties)

@ graph.remove(node_.id)

@ graph.move(node_.id, new_parent_id)

Friday, November 25, 2011



The Architecture

w i Web Servers

7 |

Data Access
Servers

Databases




Scale with Multi-DB

@ Sharding by high bits of node-id
db-shard-id = (node-id >> 52) & Oxfff

@ Easy to implement - MySQL auto-incr-id
+ predefined-base-id

@ Easy to add new shards, maximum to
4096 db instances

@ No data relocation when adding shards




Scale with Multi-DB

@ Edges and children nodes lives in the
same db shard as their parents

@ Single SQL-statement on graph.children

@ Better use of locality

@ Not always true due to graph.move




Data Access Servers

@ A Graph Access Server is a Python process
with a dozens of coro-threads.

@ Dispatcher: A coro-thread listening to

server port, dispatch access calls to
workers

@ Workers: pre-allocated coro-threads
performing cache lookup or SQL queries

* coro-thread: coroutine thread, a
lightweight user-space 'thread’.
https://github.com/slideinc/gogreen

Friday, November 25, 2011



https://github.com/slideinc/gogreen
https://github.com/slideinc/gogreen

Data Access Servers

@ What else in a Graph Access Server ?

@ A Pool of Connections to all DB shards

@ Cache LRU Balancer: a coro-thread
periodically monitoring in-memory
data cache, evicting least recently
used items.




LRU Caches

@ L1 Cache: nodes/edges, a big Python
Dict using node-id as keys

® L2 Cache: Similar to L1, but all data are
compressed via zlib + wirebin

@ Cache data are persistent on disk when
server exits. Serialize with wirebin

@ Only read-cache, always write through




Cache Invalidation

@ graph.update invalidates the cache of that
node

@ graph.create invalidates the cache of the
parent

@ graph.remove invalidates the cache of that
node and its parent

@ graph.move invalidates the cache of old
parent and new parent

Friday, November 25, 2011



Worker

Dispatcher

< RPC Calls

Graph
Server

Friday, November 25, 2011

DB Connection

Pool

LRU Balancer




Server Conhguration

@ 32 graph-server instances on a physical
server box (approximately to num-of-cores)

@ In each graph-server
@ 128 workers

® 16 Connections to each DB shards

Friday, November 25, 2011



Performance for Single
Server

@ Server 128 x 32 requests in parallel
@ Average response times 1.38ms

@ Average Cache-hit rate 99.72%

@ Theoretically, MAX Request Per Sec on a box
= 128 x 32 x (1000 / 1.38)
= 2.73 Million

Friday, November 25, 2011



Scale with Multi Graph
AcCcess Servers

@ Sharding by lower bits of node-id
server-id = node-id & Oxff

@ Uniformly distribute traffic

@ A node only is cached on a single server.

No cache-sync between servers.
* Except for peers, see the next slide




Failover with a peer
Graph Server

@ If we have 32 servers with id 0...31, each server
will subscribe requests for node-id meeting

(node-id & Oxf) == (server-id & Oxf)
i.e, server with id-N and id-(N+16) are peers.

® For cache invalidation, the server will broadcast
to its peer.

@ On pushing new server code, the peers always
restarted sequentially

Friday, November 25, 2011



Summary

@ A Graph Model for general data storage

@ Leverage coroutine-threads to archive high
performance

@ A 2-level In-memory cache to minimize DB
access

@ Scale across multi servers with simple
sharding function

Friday, November 25, 2011



Thanks, questions?




